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A prescription is derived for setting up 'optimum hybrids'. A simple localised-orbital wave 
function, based on these hybrids, gives the closest possible approach to the results of an accurate 
SCF calculation, the error depending only on constraints imposed on the forms of the hybrids and 
vanishing when all restrictions are removed. The hybrids describing the bonds and lone pairs in CH v 
H20 and CHzO are obtained and discussed. 

Eine Vorschrift zur Bestimmung ,,optimaler Hybride" wird angegeben, und eine einfache Wellen- 
funktion mit lokalisierten Einelektronenzust~inden, die sich aus diesen Hybriden aufbaut, kommt den 
Ergebnissen einer SCF-Rechnung am n~ichsten. Der Fehler h~ingt nur yon den Nebenbedingungen, 
die die Form der Hybride bestimmen, ab und verschwindet, wenn keine derartigen Einschr~inkungen 
vorliegen. In diesem Zusammenhang werden die Hybride, die in den Molekfilen CH~, H~O und CH,O 
vorliegen, diskutiert. 

On 6tablit une m6thode pour construire des ~hybrides optima~. Une simple fonction d'onde en 
orbitales localisdes, bas6es sur ces hybrides,donne des r6sultats aussi voisins que possible de ceux 
d'un calcul S.C.F. pr6cis, l'erreur ne d6pendant que des containtes impos6es h la forme des hybrides 
et disparaissant lorsque ces contraintes sont abolies. On obtient ainsi les hybrides d6crivant les liaisons 
et les paires libres dans CH v OH 2 et CH20. 

t .  Introduct ion 

M a n y  prescr ip t ions  have been devised recent ly  for ex t rac t ing  a set of  local ised 
orb i ta l s  f rom a wave funct ion  based  on non- loca l i sed  molecu la r  orb i ta l s  (MO's )  
or  for set t ing up  hybr id  A O ' s  f rom which such orb i ta l s  m a y  be cons t ruc ted  [1-11] .  
The  genera l  a im is to  o b t a i n  a more  subs tan t ia l  f ounda t i on  for the desc r ip t ion  of  a 
molecule  in te rms of  wel l -es tabl i shed  concepts  such as inner  shells, lone  pairs,  and  
b o n d  pairs.  I t  is well  k n o w n  tha t  wave  funct ions recognis ing the ind iv idua l i ty  
of  such units, or  "e lec t ron  groups" ,  in which, for example ,  b o n d  orb i ta l s  a re  
cons t ruc ted  f rom hybr ids  po in t ing  a long  the b o n d  direct ions ,  m a y  easily be 
deve loped  to  give g r o u n d  s ta te  energies cons ide rab ly  super io r  to  those  der ived  
using a p p r o x i m a t e  self-consistent  field (SCF) M O  theory  [12-16] .  But there  are  
m a n y  ins tances  - for example  when the b o n d s  are  "bent"  or  when there  are  lone 
pai rs  of  e lec t rons  - in which the forms of  the local ised  orbi ta ls ,  or  of  the o p t i m u m  
hybr ids  f rom which they m a y  mos t  effectively be cons t ruc ted ,  are  no t  in tui t ively  
apparen t .  In  such cases there  is a special  need to fo rmula te  ma thema t i ca l  cr i ter ia  
for a "bes t  poss ib le"  desc r ip t ion  in te rms o f  local i sed  orb i ta l s  cons t ruc ted  by 
combin ing  sui table  hybr ids  on  ad jacen t  a toms.  The  hybr ids  requi red  mus t  be  
chosen  accord ing  to a precise  def ini t ion of  " loca l i sa t ion"  and  accord ing  to the 
use for which they are  in tended.  In  par t icu lar ,  the  genera l  pu rpose  of  the  in t roduc -  
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tion of hybrids and localised orbitals may be (i) that of analysing a given SCF 
calculation in order to present it in a form more suitable for discussion and 
application in a chemical context, besides preparing the ground for further 
improvement (e.g. by configuration interaction); or (ii) that of setting up a basis 
with certain advantageous features, before even starting a detailed calculation. 
In the latter case only the simplest properties of the "pure" atomic orbital (AO) 
basis (e.g. overlap properties) would be used; and some aspects of this approach 
have already been discussed [2, 4, 6, 7, 103. On the other hand, the availability 
of the results of an SCF calculation or of a reliable approximation to it, in terms 
of the AO basis, permits a more sophisticated analysis leading to hybrids which 
may be compared with those set up by simpler methods and may offer further 
guidance in framing appropriate hybridisation criteria. In this paper we focus 
attention on the direct determination of optimum hybrids with which to reproduce, 
as closely as possible, the results of a standard SCF MO calculation. The work 
differs from that of other authors in applying equally well to empirical or non- 
empirical wave functions, in giving full recognition to the importance of the lone 
pairs in determining the form of the hybridisation, and in using the total electronic 
energy as a basic criterion for the optimum hybrids. We stress again the fact that 
hybridisation is an artificial concept," introduced as an aid to the construction and 
interpretation of wave functions; different approaches naturally lead to different 
mathematical prescriptions for obtaining "optimum" hybrids. Here we adopt a 
point of view which emphasises the special value and convenience of using an 
orthogonalised orbital basis, with properties which are fully discussed elsewhere [ 16]. 

2. Formulation of  the Problem 
We start from a closed shell one-determinant wave function in which the n 

orbitals A, B, C, ... are the non-localised MO's resulting, we may suppose, from 
an approximate SCF calculation. This approximation is known to yield a good 
electron density, 

P(r)=.2 ~ U(r) U*(r) (1) 
U(occ) 

and to give a good account of all related one-electron properties, in spite of its 
failure to include electron correlation in a satisfactory way. The most important 
type of correlation, that between electrons in localised regions such as bonds, may 
be introduced later as a refinement; what is important here is to find the forms of 
the localised orbitals so as to reproduce adequately the properties of the one- 
determinant approximation. 

If the n MO's are expanded in terms ofm AO's (basis functions) so that 

u = y~ r (2) 
i 

we obtain 
P(r) = • el(r) Pijr (3) 

i , j  

where the elements of the m x m matrix P, which are essentially charges and bond 
orders, are given by 

Pu = 2 E ICwlL P,) = 2 E C,u C*v" (4) 
U(oec) U(occ) 
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The energy of the system in one-determinant approximation is then determined 
entirely by P, the variationally best value resulting when 

E = t r f P  + �89 = minimum value (5) 

where f is the Hamiltonian for an electron in the field of the bare nuclei (or of a 
core consisting of inner shells), and G is the Roothaan electron-interaction matrix. 
The SCF equations result from the stationary condition (5) taking due regard to the 
properties of the matrix P and the fact that (7 itself depends on the charge density 
(i.e. on P). The first-order change in E, due to a change 6P, is in fact 

~E = tr h~P (6) 
where h = f +  G (7) 

is the matrix of the Hartree Fock Hamiltonian. 
This allows us to write (6) in the equivalent form 

Eor b = tr hP = minimum value (8) 

in which h is regarded as a f i x e d  matrix. In semi-empirical work the self-consistent 
Hamiltonian h is regarded as a characteristic of the atoms and bonds in the system 
and its elements are used as disposable parameters, to be identified by appeal to 
experimental data. 

We now turn to the choice of basis orbitals, ~b i. Provided we perform a full 
non-empirical calculation it is irrelevant whether these are ordinary AO's, among 
which there is substantial non-orthogonality, or whether they are orthogonalised 
AO's formed by linear combination of the original AO's. It is convenient for our 
purposes, however, to assume the orbitals orthogonalised, but "closest" to the 
unmodified AO's in a least squares sense [17]. Such AO's may be set up by well- 
known methods [18] and according to some criteria at least, appear to have a 
welMocalised character; each contains small parts of the orbitals on other centres, 
but with signs that ensure cancellation of the parts of the orbitals which trespass 
on the province of neighbouring atoms 1. The following treatment can be gener- 
alised to apply directly to a non-orthogonal basis, but the prescription for localisa- 
tion then takes a less convenient form. It therefore appears to be preferable, in the 
present approach, to perform the calculations in the orthogonal basis: there is 
no difficulty in making a transformation back to ordinary AO's, at the end of the 
calculation, and for interpretive purposes this may be desirable. The orthogonal 
basis has other advantages, particularly in semi-empirical work, in so far as 
matrix elements defined over orthogonal orbitals are relatively insensitive to 
changes in molecular environment and neglect of many integrals is permissible 
[16]. Such a basis will be understood when we refer to the "AO" basis and we shall 
first of all regard h, referred to this basis, as a given matrix representing the "actual" 
Hartree-Fock operator. 

We may, of course, introduce any other basis q~l, q~2 . . . .  , for which the matrices 
P and h will assume different forms although the total electron density and energy 
remain invariant. It is important  to distinguish this type of invariance from that 
used by, for example, Lennard-Jones and co-workers [1] who make a unitary 

1 At  first sight the orthogonalised AO's  might  appear to be more diffuse than the ordinary AO's  
since small "cusps"  appear on neighbouring centres. They are however, on balance, slightly more 
concentrated in the sense that  the electrostatic self-energy integral is invariably increased in value by 
orthogonalising. 
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transformation of the occupied MO's in order to obtain localised MO's  or bond 
orbitals. Here, on the other hand, we are concerned with the nature of the basis 
orbitals and the question of how they may be chosen so as to facilitate the construc- 
tion of bond orbitals and lone pair orbitals. Now in simple valence theory it is 
generally supposed that bond orbitals may be constructed from overlapping pairs 
of suitably directed hybrid AO's; we shall therefore seek a basis of hybrid AO's 
in which q~r, q~s, say, overlap to form one bond orbital, q~ and q~, to form another, 
etc., recognising that some of the hybrids (q~w . . . .  ) may be without partners and 
that they then describe lone pairs rather than bonds. The AO basis (~b~) and the 
hybrid basis (~j) are related by a transformation matrix T whose columns express 
the hybrids in terms of AO's 

if--- ~b T (9) 

where ~b and q~ are row matrices of orbitals. A wave function specified in terms of 
hybrids will be characterised by a matrix P, instead of P, but the electron density 
may be expressed in either language using (3) and (9) thus 

P(r) = ~ ~(r) P, jq~*(r) = ~ d~k(r ) Pk~ ~)T(r) (10) 
i , j  k , l  

where 
P =  T P T  + (11) 

The point of introducing this transformation is to incorporate, via the choice 
ofF,  criteria that will determine the localisation properties of the hybrid basis. 

We do this by noting that in the approximation just envisaged a bond r - s 
formed by overlapping q~r and q~s would be described by a bond orbital a~-r + bq~. 
If we assume in the first instance non-polar bonds we have a = b = 1/~/2 and obtain 
a corresponding charge density contribution (for two electrons and real orbitals) 

The charge density expression (10) is a sum of such contributions, together with 
single terms, 2~w, representing the lone pairs. This description prescribes the form 
of P in the hybrid basis: 

r 

='"".......... 

r ""1 
I 

t 

$ 
u 

W 

t s u w 

1 
I 

I 1 . . . . . .  i -  - - 1  

I _1 ~ I I 
1 - - - ~  . . . . .  1 I 

1 -1... 

' "2 , , .  

- where each array of four l 's refers to a bond, while the diagonal 2's refer to the 
lone pairs. All other elements are zeros. If no constraints are imposed on the form 
of T (i.e. if the hybrids can be determined by freely mixing all the AO's) we know 
that a T exists such that P = T P T  t and is identical with the matrix found from the 
AO calculation; for the transformation matrix in (11) is simply the unitary matrix 
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which connects the two bases. In this case the condition 
E o r  b = tr hP = tr h TPT* = minimum value (12) 

must yield values of Eor b (and of E) identical with those from the AO calculation. 
The hybrids found in this way will not necessarily resemble those used in elementary 
valence theory, for they may contain AO's from all atoms in the molecule. If, 
however, each hybrid turns out to be composed mainly of AO's from a single 
centre 2, then the elementary description would evidently be a good one; if a 
hybrid contains AO's from two centres it will indicate a bond with considerable 
ionic character; while if a hybrid contains AO's from 3 or more centres it will 
indicate the impossibility of setting up an accurate description of the bond in 
terms of two-centre bond orbitals. The solutions of (12) will be described as 
unrestricted hybrids. 

The above considerations suggest that the validity of a localised bond descrip- 
tion may be assessed by constraining the hybrids, so that the AO's of any atom 
are mixed only among themselves, and using A Eor b - ~'( . . . .  t.) ~- - -  L, or b - -  Z-,or b a s  the measure 
of the error thereby incurred. For  we note that the first-order energy error due to an 
error 6P in P is given by (6) i.e. 

A E = A E o r  b = tr h6P = tr h(P . . . .  t. __ p) = X-'orbit'( . . . .  t.) _ E o r b  " (13) 

This constraint is imposed most simply by writing the orbitals sequentially in 
groups (one group for each atom) and then restricting T to be of block diagonal 
form, each block determining the hybridisation at a particular centre. 

It is also advantageous to consider variations on the particular block form of 
P introduced above, since this form may sometimes be too restrictive. Suppose, 
for example, that the unrestricted hybrids q~r and ~s defining a bond r -  s each 
contain large amounts of the AO's on both centres. This indicates that the bond 
is strongly polar and that the bond orbital (~r + Ss)/]f2 would not give a good 
description if only intra-atomic AO mixing were allowed. It may, however, be 
possible to find good constrained hybrids, compatible with the existence of polar 
bonds, by writing each bond orbital in the more flexible form 

cos Ors~,. + sin 0,s ~ .  

Here, 0,. 4 = re~4 describes the non-polar situation on which the original specifica- 
tion of P is based. The more familiar description in which the hybrids are intra- 
atomic in character may therefore be retrieved by admitting for each bond a 
polarity parameter 0~ and taking a more general form for P: 

F $ W 

$ 

w 

Pr prs 

Prs Ps 

(14) 

W e  no te  t h a t  the  A O ' s  " o n  a s ingle  c e n t r e "  a re  the  o r t h o g o n a l i s e d  A O ' s  f o r m a l l y  a s soc i a t ed  
wi th  t h a t  cen t r e :  r e g a r d e d  as m i x t u r e s  o f  the  o r ig ina l ,  n o n - o r t h o g o n a l  A O ' s ,  the  h y b r i d s  d o  o f  c o u r s e  
have  a c e r t a i n  m a n y - c e n t r e  c h a r a c t e r .  Th i s  s h o u l d  be  kep t  in  m i n d  w h e n  i n t e r p r e t i n g  the  resul ts  o f  
ca l cu l a t i on .  

2 Theoret. chim. Acta (Berl.) Vol. 10 



18 R. McWeeny and G. Del Re: 

in which Pr and Prs are the fundamental charge and bond order associated with 
orbital q~r and bond r - s respectively. In terms of the parameter Ors 

p~=l  +cos2Ors, p s = l - c o s 2 O r s ,  prs=sin2Ors. (15) 

The optimum hybrids of constrained form will be those obtained for the particular 
choice of Ors that minimises A E and the corresponding wave function will be the 
best bond orbital ansatz, based on constrained hybrids, with which to approximate 
the SCF MO function. 

Other variations are evidently possible. In some situations, for example, it 
might be useful to recognise 3-centre bonds; these would be incorporated by 
adopting a form of P corresponding to bond orbitals constructed from three 
hybrids instead of two. Any assumed bonding scheme merely specifies the form 
of the matrix P, and the optimum hybrids which give the best energy compatible 
with this form are then obtained by solving the variational problem (12), subject 
to the corresponding constraints, thus obtaining from (13) the smallest possible 
error. It would, of course, be possible to re-formulate the conventional SCF 
procedure along similar lines, using the P matrix in calculating the matrix G 
which appears in the definition of h in (7). At present, however, we are interested 
mainly in reproducing the results of a given SCF calculation in terms of a function 
constructed in a simple and chemically appealing way from hybrid orbitals. 

3. Method of  Solution 

There are many ways of achieving the stationary value 

Eor b = tr h T P T  t = minimum value 

with the auxiliary condition that T remains a unitary matrix and with any other 
desired restrictions on the form of this matrix. First, we consider the variation 
T ~  T + 6 T and express the stationary condition in the form 

~ E o r  b = t r (P  6 T t h T + P T  ~ h 6 T) = 0. (16) 

From the invariance of the trace under cyclic permutation of the matrix product, 
this may be written 6Eor b = t rX 6T  and the stationary condition (all6T) then 
implies X = O .  The orthogonality condition T* T = 1  may be incorporated, 
introducing Lagrangian multipliers, and leads easily to the final equation 

h T P =  Te (17) 

where ~ is a matrix of Lagrangian multipliers which may be chosen to have the 
hermitian form 

e= �89 h T P  + P T t  h T) . (18) 

There appears to be no simpledirect  method of solving this matrix equation and 
it appears to be simpler to minimise Eor b directly. This is a purely computational 
problem leading to a variety of procedures. We could, for example, start from any 
(unitary) first approximation to T and make successive modifications proportional 
to the matrix of"residuals" from (17). In this case 

6 T =  - 2 ( h T P -  r~) (19) 

where e is given in (18) and 2 is a numerical parameter. This procedure corresponds 
to steepest descent of the energy surface and an optimum value of 2 may be 
determined in various ways. If T is constrained to be of block form the same 
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procedure may be followed using partitioned matrices. The optimum correction 
of the T matrix for atom R is then found to be 

6 T  R = - 2 [ ( h R R T a p  R R -  TRe RR) + ~ (hRSTSp s R -  TReRSR)] (20) 
S(~R) 

where, for example, h Rs is the RS-block or sub-matrix of h and 

e RR = �89 [(T m h ag T R p  gg) + (hermitian conjugate)] 
(21) 

eRSR = �89 [(TR* hRS Ts pSR) + (hermitian conjugate)]. 

In this case the dimensions of the sub-matrices are restricted by the number of 
orbitals on a single atom and the molecular size is not a limiting factor in the 
computations. The corrections are made atom-by-atom in a cyclic process until 
convergence is obtained. 

To allow for polarity of the bonds we must minimise Eorb, using the block form 
of T as above, and must also minimise with respect to variation of the polarity 
parameters, 0r, in equation (15). A straightforward analysis shows that the 
optimum value of RS Ors, for a link involving orbitals r, s on atoms R and S respec- 
tively is given by 72".RS - -  L--SR 

RS I1rs + nsr (~RS TR* h TS) . (22) tan20rs = F . R R  

h r r  - 

The minimising of Eor u is conveniently accomplished by starting from the non- 
polar solution, revising the 0 values by (22), correcting each block of the T 
matrix with the revised 0 values, and repeating the process iteratively. 

4. Results and Discussion 

Detailed calculations have been performed on three molecules (i) methane, 
(ii) water, and (iii) formaldehyde. In each case, the Hartree-Fock Hamiltonian is 
taken from a non-empirical SCF calculation based on an orthogonalised set of 
hybrid AO's. Three approximations are distinguished: 

A) A non-polar calculation is performed, in which the hybrids are combined 
in pairs to yield a P-matrix of the form (14) with Pr = Ps = Prs = 1 (for each bond 
pair) and the optimum hybrids are formed from the initially assumed hybrids of 
each atom, only intra-atomic mixing being allowed. 

B) Polarisation of the bonds is admitted by iterative revision of the charges 
and bond orders (via the polarity parameter Ors in (15)) the calculation being 
otherwise as in (A). 

C) Delocalisation of the optimum hybrids found in (B) is admitted by relaxing 
the condition that only intra-atomic mixing be permitted. In this case no con- 
straints remain and the results are identical with those of the full SCF calculation. 

At each stage of refinement new physical effects are recognised: starting from 
initial hybrids pointing along the bond directions, (A) allows bond "bending"; 
(B) allows ionic character to develop, according to the relative electronegativities 
of the pairs of atoms concerned; and (C) allows delocalisation of the bonding and 
thus indicates to what extent a "perfect pairing" model is valid. The relative 
importance of these effects is expected to be widely different in the three molecules 
considered; in methane the hybrids are largely determined by symmetry, there 
can be no bending and the interesting features are the bond polarity and degree 
of delocalisation; in water the hybrids may be set up by the simple prescription 
of pointing them along the bond directions (lone pairs being determined by 
2* 
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orthogonality conditions), but the lower symmetry allows the development of 
some degree of bending; in formaldehyde the corresponding prescription leaves 
the oxygen hybrids undetermined, and the nature of the valence state is an open 
question. 

The results of these calculations are embodied in Tables 1-3, and will be 
discussed briefly, molecule by molecule. 

(i) Methane.  The initial hybrids are set up by symmetrically orthogonalising 
[18] the usual set of tetrahedral sp 3 hybrids. The integrals and the Hartree-Fock 
Hamiltonian on this basis are available from the work of Klessinger and McWeeny 
[i5]. The results are shown in Table 1. For this molecule the optimum hybrids in 
approximations A and B are identical with the initial hybrids, as would be expected 
from symmetry considerations. When polarisation is admitted, the energy error 
falls virtually to zero. When further delocalisation of the hybrids is allowed 

Table  1. Results for CH 4 

Approximation a Populations and bond orders Eneroy error (a.u.) 

bl ha bl - h i  

A 1.0 1.0 1.0 0.063 
B 1.080 0.920 0.997 0.000 

Optimum hybrids 

A, B b'l = bl 
C b~ = 0.999 bl  - 0.042 h: + 0.012 (h2 + h3 + h4) 

bl . . . .  , be are bond  hybr ids  po in t ing  towards  hydrogen  A O ' s  h i ,  ..., h4. 

a A p p r o x i m a t i o n s  A, B, C are  descr ibed  in the text. The  popu l a t i ons  and  b o n d  orders  in C coincide  
wi th  those  in B. 

Tab le  2. Results for HzO 

Approximation ~ Populations and bond orders Energy error (a.u.) 

b 1 h: b I - h  i 

A 1.0 1.0 1.0 0.020 
B 1.117 0.883 0.993 0.002 

Optimum hybrids 

A b~ = 0.998 bt  - 0.002 b 2 - 0.046 (11 + 12) 
l~ = 0.998 11 - 0.002 1 z + 0.046 (b x + bz) 

B b~ = 0.999 b 1 - 0 . 0 0 1  b 2 - 0 . 0 3 1  (11 + 12) 
l] = 0.999 11 - 0.001 1 z + 0.031 (ha + bz) 

C hi  = 0.999 b l  - 0.012 (Ix + 12) - 0.012 hz + " "  
l': = 0.999 l l  + 0.012 (bl + b2) - 0.012 (hi + h2) + "'" 

bl,b2 are  bond  hybr ids  po in t ing  t owards  hyd rogen  AO' s  h~,h2; l: , l  z are lone pa i r  hybr ids  
(comple t ing  a rough ly  t e t r ahedra l  set). In  a p p r o x i m a t i o n  C, t e rms  wi th  coefficients less than  .005 have  
been omit ted .  

a A p p r o x i m a t i o n s  A, B, C are  descr ibed  in the text. The  popu l a t i ons  and  b o n d  orders  in C coincide  
wi th  those  in  B. 
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Table 3. R e s u l t s  f o r  CH20 

A p p r o x i m a t i o n "  P o p u l a t i o n s  and  b o n d  orders  E n e r g y  

b 1 h~ b l - h l  a c  ao a c - a  o 7Zc no  n c - n o  e r r o r ( a . u . )  

A 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.130 
B 1.107 0.893 0.994 0.880 1.120 0.993 1.032 0.968 1.000 0.101 

O p t i m u m  hybr ids  

A b'~ = 0.999 bl + 0.028 a c 

at = 0.999 a c - 0.028 (bl + b2) 
ab = 0.999 ao - 0.037 (l 1 + 12) 
1'1 = 0.999 I~ + 0.037 ao - .001 12 

B b ' l = O . 9 9 9 b ~ + O . O 3 8 a c - O . O O l b 2  

a t = 0.999 cr c - 0.038 (b 1 + b2) 
a~ = 0.999 a o - 0.024 (11 + 12) 
I'~ = 0.999 11 + 0.024 a o 

C b l = O . 9 9 5 b l + O . O 1 9 a c - O . O 5 9 1 i + O . O 7 2 1 2 + O . O 1 5 h ~ + O . O 2 0 h 2 - O . O O 7 a o + ' "  

a~: = 0.999 a c  + 0.019 (b~ + b2) + 0.012 (11 + 12) - 0.007 (hi + h2) + '" 
ab = 0.999 a o - 0.011 (ll + 12) + 0.017 (hi + ha) + 0.007 (bl  + b2) + "" 

I'1 = 0.990 ll + 0.010 a o + 0.061 b 1 - 0.074 b 2 - 0.066 h 1 + 0.081 h 2 - 0.012 a c + 0.010 l 2 + --- 

bib 2 are carbon bond hybrids pointing towards hydrogen AO's hi, h2; a c is the carbon C-O 
bond hybrid; I t l  2 are oxygen (sp 2) lone pair hybrids; ao  is the oxygen C-O bond hybrid; n c and n o 

are carbon and oxygen AO's of the n bond. All cr orbitals are coplanar, l i and bl, h~ being on the same 
side of the 120  bond. In approximation C terms with coefficients less than .005 have been omitted. 

" Approximations A, B, C, are described in the text. The populations and bond orders in C coincide 
with those in B. 

( a p p r o x i m a t i o n  C) the  ene rgy  is in  exact  a g r e e m e n t  wi th  t ha t  f rom the  S C F  
c a l c u l a t i o n ;  this  de loca l i s a t i on  is c l e a r l y s l i g h t  a n d  n o t  s igni f icant  energet ical ly .  

(ii) W a t e r .  T h e  in i t i a l  h y b r i d s  are c o n s t r u c t e d  by  o r t h o g o n a l i s i n g  the  rough ly  
t e t r ahed ra l  set in  which  two  h y b r i d s  p o i n t  a l o n g  the  b o n d  d i r ec t ions  a n d  the  o the r  
two h o l d  the  l one  pairs .  T h e  S C F  d a t a  were o b t a i n e d  f rom ca l cu l a t i ons  b y  Kles -  
s inger  [19] .  T h e  resul ts  a p p e a r  i n  T a b l e  2. W i t h  the  a s s u m p t i o n  of  n o n - p o l a r  
b o n d s  the  energy  is in  e r ro r  b y  .020 a.u., b u t  this  is r educed  to .002 a.u. w h e n  
p o l a r i s a t i o n  is a l lowed.  I n  b o t h  cases the  o p t i m u m  hyb r id s  are  very close to  
the  in i t i a l  hybr ids ,  i n d i c a t i n g  a n  ins ign i f i can t  a m o u n t  of  " b o n d  bend ing . "  O n  
a l l owing  fu r the r  de loca l i s a t i on  ( a p p r o x i m a t i o n  C) the  e r ro r  o f  .002 a.u. is e l im-  
ina ted ,  b u t  the  h y b r i d s  themse lves  are  still n o t  ser ious ly  affected. 

(iii) F o r m a l d e h y d e .  T h e  in i t i a l  h y b r i d s  were  those  e m p l o y e d  by  C ook ,  Hol l i s  
a n d  M c W e e n y  [16]  in  a p p r o x i m a t e  ab  in i t io  ca lcu la t ions ,  the  oxygen  va lence  s ta te  
be ing  a s s u m e d  t r i g o n a l  i n  a n t i c i p a t i o n  of  the  expected  h igh  loca l i s a t i on  of  the  
f inal  l o n e  pa i r  orbi ta ls .  T h e  accu ra t e  S C F  ca l cu l a t i ons  were based  o n  in tegra l s  
o b t a i n e d  b y  N e w t o n  [20] .  T h e  resul ts  i n  T a b l e  3 i nd i ca t e  tha t  the  first a p p r o x i m a -  
t i o n  (A) is in  this  case m u c h  poore r ,  g iv ing  a n  ene rgy  e r ro r  of  0.130 a.u. Th i s  e r ro r  
is r educed  by  o n l y  0.029 a.u. b y  a d m i t t i n g  b o n d  p o l a r i s a t i o n  a n d  the  res idua l  
0.101 a.u. is c o n n e c t e d  who l ly  wi th  de loca l i s a t i on  effects. F i rs t ,  however ,  we n o t e  
tha t  the  po la r i t i e s  o f  the  C - O  a a n d  n b o n d s  a re  in  o p p o s i t i o n ;  0.120 o f a  a e lec t ron  
is d o n a t e d  by  the  c a r b o n  to  the  oxygen,  b u t  this  r ep resen t s  a n  o v e r - c o m p e n s a t i o n  
for the  grea te r  e l ec t ronega t iv i ty  of  the  oxygen,  a n d  there  is c o n s e q u e n t l y  a b a c k -  

d o n a t i o n  of  0.032 of  a n e lec t ron .  Such  a n  effect is wide ly  r ecogn i sed  in  the  s tudy  
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of  inorgan ic  complexes ,  bu t  is in conflict  wi th  the a s sumpt ions  usual ly  m a d e  in 
o rgan ic  chemist ry ,  where  n i t rogen  and  oxygen  are  n o r m a l l y  assumed  to have  a 
greater affinity, even for rc electrons, t han  carbon .  The  or ig in  of  the  second i m p o r t a n t  
feature  of  these results ,  n a m e l y  the  cons ide rab le  de loca l i sa t ion  energy, is evident  
f rom a s tudy  of  the  o p t i m u m  hybr ids  in A p p r o x i m a t i o n  C (which exact ly  r ep roduce  
the S C F  results). All  the  o rb i ta l s  of  the loca l i sed  b o n d s  are, in fact, c o n t a m i n a t e d  
to  a cons ide rab le  degree  by  a d m i x t u r e  of  the  in i t ia l ly  a d o p t e d  lone pa i r  orbi ta ls .  
In  o the r  words  a subs tan t i a l  pa r t  of  the  o- b o n d i n g  ar ises  f rom deloca l i sed  orb i ta l s  
which sp read  all  the  way  f rom the h y d r o g e n  a t o m s  to the  oxygen lone  pa i r  region.  
This  resul t  is in con t r a s t  wi th  tha t  o b t a i n e d  for methane ,  where  there  are  no  lone 
pai rs  and  where  mix ing  of  different hybr ids  is p rec luded  by  s y m m e t r y  cons idera-  
tions. 

I t  is no t  the  in tent ion ,  in this  paper ,  to p resen t  a m o r e  de ta i led  analysis  of  the  
charge  d i s t r ibu t ion  in the  molecules  cons idered .  I t  is clear,  however ,  tha t  the 
loca l i sa t ion  p rocedu re  here  a d o p t e d  a l lows us to give a quan t i t a t ive ly  significant 
analysis  of  h i the r to  i l l -def ined effects such as  b o n d  bending ,  b o n d  po la r i s a t ion  
and  b o n d  de loca l i sa t ion ,  and  to  discuss the  i m p o r t a n c e  of  these effects in terms 
of  energy con t r ibu t ions .  M o r e  de ta i l ed  d iscuss ion  of  the charge  dens i ty  itself, 
and  of  the  use of  o p t i m u m  hybr ids  in CI  ca lcula t ions ,  will be t aken  up in la ter  
papers .  
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